Restricted maximum likelihood estimation of genetic principal components and smoothed covariance matrices
نویسندگان
چکیده
منابع مشابه
Maximum Smoothed Likelihood Estimation
Looking myopically at the larger features of the likelihood function, absent some fine detail, can theoretically improve maximum likelihood estimation. Such estimators are, in fact, used routinely, since numerical techniques for maximizing a computationally expensive likelihood function or for maximizing a Monte Carlo approximation to a likelihood function may be unable to investigate small sca...
متن کاملConsistency Of Restricted Maximum Likelihood Estimators Of Principal Components
In this paper we consider two closely related problems : estimation of eigenvalues and eigenfunctions of the covariance kernel of functional data based on (possibly) irregular measurements, and the problem of estimating the eigenvalues and eigenvectors of the covariance matrix for high-dimensional Gaussian vectors. In [23], a restricted maximum likelihood (REML) approach has been developed to d...
متن کاملPenalized maximum-likelihood estimation of covariance matrices with linear structure
y In this paper, a space-alternating generalized expectation-maximization (SAGE) algorithm is presented for the numerical computation of maximum-likelihood (ML) and penalized maximum-likelihood (PML) estimates of the parameters of covariance matrices with linear structure for complex Gaussian processes. By using a less informative hidden-data space and a sequential parameter-update scheme, a SA...
متن کاملComparison of Local and Non-Local Methods in Covariance Matrix Estimation by Using Multi-baseline SAR Interferometry and Height Extraction for Principal Components with Maximum Likelihood Approach
By today, the technology of synthetic aperture radar (SAR) interferometry (InSAR) has been largely exploited in digital elevation model (DEM) generation and deformation mapping. Conventional InSAR technique exploits two SAR images acquired from slightly different angles, in which the information of elevation and deformation can be captured through processing of the phase difference of the image...
متن کاملComputationally efficient maximum-likelihood estimation of structured covariance matrices
A computationally e cient method for structured covariance matrix estimation is presented. The proposed method provides an Asymptotic (for large samples) Maximum Likelihood estimate of a structured covariance matrix and is referred to as AML. A closed-form formula for estimating Hermitian Toeplitz covariance matrices is derived which makes AML computationally much simpler than most existing Her...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Genetics Selection Evolution
سال: 2005
ISSN: 1297-9686
DOI: 10.1186/1297-9686-37-1-1